Nucleotide-level distance metrics to quantify alternative splicing implemented in TranD

Author:

Nanni Adalena12ORCID,Titus-McQuillan James3ORCID,Bankole Kinfeosioluwa S12,Pardo-Palacios Francisco4,Signor Sarah5ORCID,Vlaho Srna6,Moskalenko Oleksandr7,Morse Alison M12,Rogers Rebekah L3ORCID,Conesa Ana4ORCID,McIntyre Lauren M12ORCID

Affiliation:

1. Department of Molecular Genetics and Microbiology, University of Florida , Gainesville, FL  32611 , USA

2. University of Florida Genetics Institute, University of Florida , Gainesville, FL  32611 , USA

3. University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte , NC , USA

4. Institute for Integrative Systems Biology. Spanish National Research Council , Paterna , Spain

5. Department of Biological Sciences, North Dakota State University , Fargo, ND, USA

6. Department of Biological Sciences, University of Southern California , Los Angeles , CA , USA

7. University of Florida Research Computing, University of Florida , Gainesville, FL  32611 , USA

Abstract

Abstract Advances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription across the tree of life. We develop a mathematical framework to calculate complexity and compare transcript models. Structural features, i.e. intron retention (IR), donor/acceptor site variation, alternative exon cassettes, alternative 5′/3′ UTRs, are compared and the distance between transcript models is calculated with nucleotide level precision. All metrics are implemented in a PyPi package, TranD and output can be used to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons between: annotations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. In C. elegans, Z. mays, D. melanogaster, D. simulans and H. sapiens, alternative exons were observed more frequently in combination with an alternative donor/acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with empirical support. D. melanogaster and D. simulans, share many transcript models and long-read RNAseq data suggests that both species are under-annotated. We recommend combined references.

Funder

National Institute of General Medical Sciences

University of Florida

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3