Optimised multiplex amplicon sequencing for mutation identification using the MinION nanopore sequencer

Author:

Whitford Whitney,Hawkins Victoria,Moodley Kriebashne,Grant Matthew J.,Lehnert Klaus,Snell Russell G.,Jacobsen Jessie C.

Abstract

AbstractObjectiveRapid, cost-effective identification of genetic variants in small candiate genomic regions remains a challenge, particularly for less well equipped or lower throughput laboratories. Application of Oxford Nanopore Technologies’ MinION sequencer has the potential to fulfil this requirement. We have developed a multiplexing assay which pools PCR amplicons for MinION sequencing to enable sequencing of multiple templates from multiple individuals which could be applied to gene-targeted diagnostics.MethodsA combined strategy of barcoding and sample pooling was developed for simultaneous multiplex MinION sequencing of 100 PCR amplicons, spanning 30 loci in DNA isolated from 82 neurodevelopmental cases and family members. The target regions were chosen for further interegation because a potentially disease-causative variants had been identified in affected individuals by Illumina exome sequencing. The pooled MinION sequences were deconvoluted by aligning to custom references using the guppy aligner software.ResultsOur multiplexing approach produced interpretable and expected sequence from 29 of the 30 targeted genetic loci. The sequence variant which was not correctly resolved in the MinION sequence was adjacent to a five nucleotide homopolymer. It is already known that homopolymers present a resolution problem with the MinION approach. Interstingly despite equimolar quantities of PCR amplicon pooled for sequencing, significant variation in the depth of coverage (139x – 21,499x; mean = 9,050, std err = 538.21) was observed. We observed independent relationships between depth of coverage and target length, and depth of coverage and GC content. These relationships demonstrate biases of the MinION sequencer for longer templates and those with lower GC content.ConclusionWe demonstrate an efficient approach for variant discovery or confirmation from short DNA templates using the MinION sequencing device. With less than 140x depth of coverage required for accurate genotyping, the methodology described here allows for rapid highly multiplexed targeted sequencing of large numbers of samples in a minimally equipped laboratory.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3