Hybrid EEG-EMG system to detect steering actions in car driving settings

Author:

Vecchiato GiovanniORCID,Del Vecchio Maria,Ambeck-Madsen Jonas,Ascari Luca,Avanzini Pietro

Abstract

AbstractUnderstanding mental processes in complex human behaviour is a key issue in the context of driving, representing a milestone for developing user-centred assistive driving devices. Here we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left from right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings 128-channel EEG as well as EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side by means of a cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate left from right steering with an earlier dynamic with respect to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results are a proof of concept of how it is possible to complement different physiological signals to control the level of assistance needed by the driver.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3