Hybrid Systems to Boost EEG-Based Real-Time Action Decoding in Car Driving Scenarios

Author:

Vecchiato Giovanni

Abstract

The complexity of concurrent cerebral processes underlying driving makes such human behavior one of the most studied real-world activities in neuroergonomics. Several attempts have been made to decode, both offline and online, cerebral activity during car driving with the ultimate goal to develop brain-based systems for assistive devices. Electroencephalography (EEG) is the cornerstone of these studies providing the highest temporal resolution to track those cerebral processes underlying overt behavior. Particularly when investigating real-world scenarios as driving, EEG is constrained by factors such as robustness, comfortability, and high data variability affecting the decoding performance. Hence, additional peripheral signals can be combined with EEG for increasing replicability and the overall performance of the brain-based action decoder. In this regard, hybrid systems have been proposed for the detection of braking and steering actions in driving scenarios to improve the predictive power of the single neurophysiological measurement. These recent results represent a proof of concept of the level of technological maturity. They may pave the way for increasing the predictive power of peripheral signals, such as electroculogram (EOG) and electromyography (EMG), collected in real-world scenarios when informed by EEG measurements, even if collected only offline in standard laboratory settings. The promising usability of such hybrid systems should be further investigated in other domains of neuroergonomics.

Publisher

Frontiers Media SA

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3