EEG–EMG coupling as a hybrid method for steering detection in car driving settings

Author:

Vecchiato GiovanniORCID,Del Vecchio Maria,Ambeck-Madsen Jonas,Ascari Luca,Avanzini Pietro

Abstract

AbstractUnderstanding mental processes in complex human behavior is a key issue in driving, representing a milestone for developing user-centered assistive driving devices. Here, we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left and right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings of 128-channel EEG and EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side using cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate the steering side earlier relative to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy, and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results prove how it is possible to complement different physiological signals to control the level of assistance needed by the driver.

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alignment-Enhanced Interactive Fusion Model for Complete and Incomplete Multimodal Hand Gesture Recognition;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2023

2. Driving EEG based multilayer dynamic brain network analysis for steering process;Expert Systems with Applications;2022-11

3. The Survey of Automatic Following Methods of Lower Limb Rehabilitation Robot based on Multi-Source Information Fusion;2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE);2022-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3