SAMD1 Distribution Patterns in Mouse Atherosclerosis Models Suggest Roles in LDL Retention, Antigen Presentation, and Cell Phenotype Modulation

Author:

Campbell BruceORCID,Bourassa PatriciaORCID,Aiello RobertORCID

Abstract

AbstractThe theory that lesions formed by retention of circulating LDL can then progress to complicated atherosclerotic lesions has been a subject of debate, as has the mechanism of retention. In earlier work, we identified SAMD1, a protein expressed by intimal smooth muscle cells in human lesions that appears to irreversibly bind apoB-Lps in extracellular matrix near the lumen. We hypothesized this binding could contribute to the formation of lesions in mice, and that inhibiting binding could reduce lesion growth. In mouse models of atherosclerosis, we found that SAMD1 binds LDL; that SAMD1/apoB complex is ingested by intimal cells; and that recognizable epitopes of the SAMD1/apoB complex survive some degree of catabolism in foam cell. These data appear to support the SAMD1/LDL retention hypothesis of lesion growth. Despite apparently irreversible binding of human LDL to full-length human SAMD1, efficient anti-SAMD1-antibody inhibitors were created. In vivo lesion targeting of inhibitors was demonstrated by MRI, ultrasound, and ex vivo microscopy. However, only non-statistically significant reductions in spontaneous lesion size in apoE-/- mice were seen after 12 weeks of treatment with PEG-fab inhibitors of SAMD1/LDL binding. In contrast, these inhibitors substantially reduced LDL retention in carotid injury lesions in apoE-/- and LDLR-/- mice 7 days after injury. The most obvious difference between injury lesions and early spontaneous lesions is the presence of numerous smooth muscle cells and associated extracellular matrix in the injury lesions. Thus, SAMD1 may be involved in retention of apoB-Lps in mouse lesions, but not until smooth muscle cells have entered the intima. In addition, SAMD1 is seen throughout arteries in changing patterns that suggest broader and more complicated roles in atherosclerosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3