Abstract
AbstractPhotoreceptors are proteins that sense incident light and then trigger downstream signaling events. Phytochromes are linear tetrapyrrole-binding photoreceptors present in plants, algae, fungi, and various bacteria. Most phytochromes respond to red and far-red light signals. Among the phytochrome superfamily, cyanobacteria-specific cyanobacteriochromes show much more diverse optical properties covering the entire visible region. Both phytochromes and cyanobacteriochromes share the GAF domain scaffold to cradle the chromophore as the light-sensing region. It is unknown what physiological demands drove the evolution of cyanobacteriochromes in cyanobacteria. Here we utilize ancestral sequence reconstruction and report that the resurrected ancestral cyanobacteriochrome proteins reversibly respond to green and red light signals. pH titration analyses indicate that the deprotonation of the bound phycocyanobilin chromophore enables the photoreceptor to perceive green light. The ancestral cyanobacteriochromes show modest thermal reversion to the green light-absorbing form, suggesting that they evolved to sense green-rich irradiance rather than red light, which is preferentially utilized for photosynthesis. In contrast to plants and green algae, many cyanobacteria can utilize green light for photosynthesis with their special light-harvesting complexes, phycobilisomes. The evolution of green/red sensing cyanobacteriochromes may therefore have allowed ancient cyanobacteria to acclimate to different light environments by rearranging the absorption capacity of the cyanobacterial antenna complex by chromatic acclimation.Significance StatementLight serves as a crucial environmental stimulus affecting the physiology of organisms across all kingdoms of life. Photoreceptors serve as important players of light responses, absorbing light and actuating biological processes. Among a plethora of photoreceptors, cyanobacteriochromes arguably have the wealthiest palette of color sensing, largely contributing to the success of cyanobacteria in various illuminated habitats. Our ancestral sequence reconstruction and the analysis of the resurrected ancestral proteins suggest that the very first cyanobacteriochrome most probably responded to the incident green-to-red light ratio, in contrast to modern red/far-red absorbing plant phytochromes. The deprotonation of the light-absorbing pigment for green light-sensing was a crucial molecular event for the invention of the new class of photoreceptors with their huge color tuning capacity.
Publisher
Cold Spring Harbor Laboratory