Affiliation:
1. Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;, ,
2. Consortium for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637;
Abstract
Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental—and as yet imperfectly answered—question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).
Subject
Cell Biology,Plant Science,Molecular Biology,Physiology
Cited by
435 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献