Computational design of highly signaling active membrane receptors through de novo solvent-mediated allosteric networks

Author:

Chen K-Y.,Lai J.K.,Wang J.,Russell A.M.,Conners K.,Rutter M.E.,Condon B.,Tung F.,Kodandapani L.,Chau B.,Zhao X.,Benach J.,Baker K.,Hembre E.J.,Barth P.

Abstract

AbstractProtein catalysis and allostery require the atomic-level orchestration and motion of residues, ligand, solvent and protein effector molecules, but the ability to design protein activity through precise protein-solvent cooperative interactions has not been demonstrated. Here, we report the design of a dozen novel membrane receptors catalyzing G-protein nucleotide exchange through diverse de novo engineered allosteric pathways mediated by cooperative networks of intra-protein, protein-ligand and solvent molecule interactions. Consistent with the predictions, designed protein activities strongly correlated with the level of solvent-mediated interaction network plasticity at flexible transmembrane helical interfaces. Several designs displayed considerably enhanced thermostability and activity compared to related natural receptors. The most stable and active variant crystallized in an unforeseen signaling active conformation, in excellent agreement with the design models. The allosteric network topologies of the best designs bear limited similarity to those of natural receptors and reveal a space of allosteric interactions larger than previously inferred from natural proteins. The approach should prove useful for engineering proteins with novel complex protein catalytic and signaling activities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3