A Treatment-Naïve Cellular Atlas of Pediatric Crohn’s Disease Predicts Disease Severity and Therapeutic Response

Author:

Zheng Hengqi BettyORCID,Doran Benjamin A.ORCID,Kimler KyleORCID,Yu Alison,Tkachev Victor,Niederlova Veronika,Cribbin Kayla,Fleming Ryan,Bratrude Brandi,Betz Kayla,Cagnin Lorenzo,McGuckin Connor,Keskula Paula,Albanese Alexandre,Sacta Maria,de Sousa Casal Joshua,Taliaferro Faith,Ford Madeline,Ambartsumyan Lusine,Suskind David L.,Lee Dale,Deutsch Gail,Deng Xuemei,Collen Lauren V.,Mitsialis Vanessa,Snapper Scott B.,Wahbeh Ghassan,Shalek Alex K.ORCID,Ordovas-Montanes JoseORCID,Kean Leslie S.ORCID

Abstract

AbstractCrohn’s disease is an inflammatory bowel disease (IBD) which most often presents with patchy lesions in the terminal ileum and colon and requires complex clinical care. Recent advances in the targeting of cytokines and leukocyte migration have greatly advanced treatment options, but most patients still relapse and inevitably progress. Although single-cell approaches are transforming our ability to understand the barrier tissue biology of inflammatory disease, comprehensive single-cell RNA-sequencing (scRNA-seq) atlases of IBD to date have largely sampled pre-treated patients with established disease. This has limited our understanding of which cell types, subsets, and states at diagnosis are predictive of disease severity and response to treatment. Here, through a combined clinical, flow cytometric, and scRNA-seq study, we profile diagnostic human biopsies from the terminal ileum of treatment-naïve pediatric patients with Crohn’s disease (pediCD; n=14) and from non-inflamed pediatric controls with functional gastrointestinal disorders (FGID; n=13). To fully resolve and annotate epithelial, stromal, and immune cell states among the 201,883 single-cell transcriptomes, we develop and deploy a principled and unbiased tiered clustering approach, ARBOL, yielding 138 FGID and 305 pediCD end cell clusters. Notably, through both flow cytometry and scRNA-seq, we observe that at the level of broad cell types, treatment-naïve pediCD is not readily distinguishable from FGID in cellular composition. However, by integrating high-resolution scRNA-seq analysis, we identify significant differences in cell states that arise during pediCD relative to FGID. Furthermore, by closely linking our scRNA-seq analysis with clinical meta-data, we resolve a vector of lymphoid, myeloid, and epithelial cell states in treatment-naïve samples which can distinguish patients with less severe disease (those not on anti-TNF therapies (NOA)), from those with more severe disease at presentation who require anti-TNF therapies. Moreover, this vector was also able to distinguish those patients that achieve a full response (FR) to anti-TNF blockade from those more treatment-resistant patients who only achieve a partial response (PR). Our study jointly leverages a treatment-naïve cohort, high-resolution principled scRNA-seq data analysis, and clinical outcomes to understand which baseline cell states may predict inflammatory disease trajectory.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3