Real-time Noise-suppressed Wide-Dynamic-Range Compression in Ultrahigh-Resolution Neuronal Imaging

Author:

Borah Bhaskar Jyoti,Sun Chi-KuangORCID

Abstract

SummaryWith a limited dynamic range of an imaging system, there are always regions with signal intensities comparable to the noise level, if the signal intensity distribution is close to or even wider than the available dynamic range. Optical brain/neuronal imaging is such a case where weak-intensity ultrafine structures, such as, nerve fibers, dendrites and dendritic spines, often coexist with ultrabright structures, such as, somas. A high fluorescence-protein concentration makes the soma order-of-magnitude brighter than the adjacent ultrafine structures resulting in an ultra-wide dynamic range. A straightforward enhancement of the weak-intensity structures often leads to saturation of the brighter ones, and might further result in amplification of high-frequency background noises. An adaptive illumination strategy to real-time-compress the dynamic range demands a dedicated hardware to operate and owing to electronic limitations, might encounter a poor effective bandwidth especially when each digitized pixel is required to be illumination optimized. Furthermore, such a method is often not immune to noise-amplification while locally enhancing a weak-intensity structure. We report a dedicated-hardware-free method for rapid noise-suppressed wide-dynamic-range compression so as to enhance visibility of such weak-intensity structures in terms of both contrast-ratio and signal-to-noise ratio while minimizing saturation of the brightest ones. With large-FOV aliasing-free two-photon fluorescence neuronal imaging, we validate its effectiveness by retrieving weak-intensity ultrafine structures amidst a strong noisy background. With compute-unified-device-architecture (CUDA)-acceleration, a time-complexity of <3 ms for a 1000×1000-sized 16-bit data-set is secured, enabling a real-time applicability of the same.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3