Author:
Chandra Abha,Hughes Timothy R.,Nugent Constance I.,Lundblad Victoria
Abstract
Cdc13 is a single-strand telomeric DNA-binding protein that positively regulates yeast telomere replication by recruiting telomerase to chromosome termini through a site on Cdc13 that is eliminated by the cdc13-2 mutation. Here we show that Cdc13 has a separate role in negative regulation of telomere replication, based on analysis of a new mutation, cdc13-5. Loss of this second regulatory activity results in extensive elongation of the G strand of the telomere by telomerase, accompanied by a reduced ability to coordinate synthesis of the C strand. Both the cdc13-5mutation and DNA polymerase α mutations (which also exhibit elongated telomeres) are suppressed by increased expression of the Cdc13-interacting protein Stn1, indicating that Stn1 coordinates action of the lagging strand replication complex with the regulatory activity of CDC13. However, the association between Cdc13 and Stn1 is abolished by cdc13-2, the same mutation that eliminates the interaction between Cdc13 and telomerase. We propose that Cdc13 participates in two regulatory steps—first positive, then negative—as a result of successive binding of telomerase and the negative regulator Stn1 to overlapping sites on Cdc13. Thus, Cdc13 coordinates synthesis of both strands of the telomere by first recruiting telomerase and subsequently limiting G-strand synthesis by telomerase in response to C-strand replication.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
208 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献