Protein folding modulates the adhesion strategy of Gram positive pathogens

Author:

Alonso-Caballero AlvaroORCID,Echelman Daniel J.,Tapia-Rojo RafaelORCID,Haldar ShubhasisORCID,Eckels Edward C.,Fernandez Julio M.

Abstract

Gram positive bacteria colonize mucosal tissues against large mechanical perturbations, such as coughing, which generate large shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys-Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring of the bacterium, allowing it to resist large mechanical shocks; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here, we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of Cpa thioester bond under force. While folded at forces < 6 pN, Cpa thioester bond reacts reversibly with amine ligands, of common occurrence in inflammation sites; however, mechanical unfolding and exposure to forces higher than 35 pN blocks thioester reactivity entirely. We propose that this folding-coupled thioester reactivity switch allows the adhesin to hop and sample host surface ligands at low force (nomadic mobility phase), and yet gets covalently anchored in place while under mechanical stress (locked phase). We dub such bonds “smart covalent bonds”, adding a novel class to the known repertoire of non-covalent adhesion strategies that include slip bonds, and catch bonds.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3