Identical Sequences, Different Behaviors: Protein Diversity Captured at the Single-Molecule Level

Author:

Tapia-Rojo RafaelORCID,Alonso-Caballero Alvaro,Badilla Carmen L.,Fernandez Julio M.

Abstract

AbstractThe classical “one sequence, one structure, one function” paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements to a few minutes, which prevents to completely characterize a protein individual and, hence, to capture the heterogeneity among molecular populations. Here, we introduce a magnetic tweezers design, which showcases enhanced stability and resolution that allows us to measure the folding dynamics of a single protein during several uninterrupted days with a high temporal and spatial resolution. Thanks to this instrumental development, we do a complete characterization of two proteins with a very different force-response: the talin R3IVVI domain and protein L. Days-long recordings on the same single molecule accumulate several thousands of folding transitions sampled with sub-ms resolution, which allows us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. Our instrumental development offers a new tool for profiling individual molecules, opening the gates to the characterization of biomolecular heterogeneity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3