Integration of eQTL and Machine Learning Methods to Dissect Causal Genes with Pleiotropic effects in Genetic Regulation Networks of Seed Cotton Yield

Author:

Zhao Ting,Wu Hongyu,Wang Xutong,Zhao Yongyan,Wang Luyao,Pan Jiaying,Mei Huan,Han Jin,Wang Siyuan,Lu Kening,Li Menglin,Gao Mengtao,Cao Zeyi,Zhang Hailin,Wan Ke,Li Jie,Zhang Tianzhen,Guan XueyingORCID

Abstract

AbstractExpression quantitative trait loci (eQTL) provide a powerful means of investigating the biological basis of genome-wide association study (GWAS) results and exploring complex traits or phenotypes. In addition to identifying the causal gene incis, eQTL analysis also reveals a large number of trans-regulated genes located on different chromosomes, which form a gene regulatory network (GRN) that complements the GWAS locus. However, the dissection of a GRN and the crosstalk underlying multiple agronomical traits, along with prioritizing important genes in eQTL-derived GRNs, remains a major challenge. In this study, we generated 558 transcriptional profiles of lint-bearing ovules at one day post-anthesis (DPA) from a selective core cotton germplasm, from which we identified 12,207 eQTLs. By integrating with a GWAS catalog, we found that 66 out of 187 (35.29%) known phenotypic GWAS loci are colocalized with 1,090 eQTLs, forming 38 major functional GRNs predominantly (30 out of 38) associated with seed size-related phenotypes. Of the eGenes, 34 were shared between at least two functional GRNs, exhibiting pleiotropic effects, such asNF-YB3,GRDP1, andIDD7. Narrow-sense heritability analysis showed that the heritability increased with combining the eQTLs with GRNs compared to those with previous yield trait GWAS loci. The extreme gradient boosting (XGBoost) machine learning approach was then applied to predict seed cotton yield phenotypes based on gene expression. Top-ranking eGenes (NF-YB3,FLA2, andGRDP1) derived by XGBoost with pleiotropic effects on yield traits were validated, along with their potential roles by correlation analysis, domestication selection analysis, and transgenic plants. This study provides insights into the mining of GRNs in relation to the pleiotropy of phenotype. The combination of eQTL and machine learning approaches is efficient in improving the genetic dissection of agricultural traits.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3