Establishment of a novel non-integrated human pluripotent stem cell-based gastruloid model

Author:

Yuan GegeORCID,Wang Jiachen,Liu Zhaode,Chen Mengqi,Zhu Pinmou,Zhang Hao,Hu Zhibin,Cui Yiqiang,Yuan YanORCID,Sha JiahaoORCID

Abstract

AbstractEmbryo loss and pregnancy disorders are prevalent worldwide, with both conditions critically associated with dysfunctioning gastrulation processes. Gastrulation and post-gastrulation organogenesis are crucial stages of embryonic development that establish the blueprint for body part formation. These processes involve the sequential generation of three germ layer cells and primordial germ cells, as well as the assembly of the precursor tissues for body parts. However, due to ethical limitations associated with studying human embryogenesis, a more detailed understanding of gastrulation and post-gastrulation organogenesis remains elusive. To ensure that the knowledge obtained from gastruloids is biologically meaningful and clinically relevant, it is critical to create high-fidelity human embryo models that closely mimic embryogenesisin vivo. Here, we developed a two-stage derivation gastruloidsin vitrobased on human pluripotent stem cells. Morphological tracking mimicks the developmental processes of models from Carnegie Stage 4 (CS4) to early CS7. Our gastruloids exhibit key structures characteristic of human embryos, including amniotic cavity, embryonic disc, primitive streak, primary yolk sac, secondary yolk sac, and blood islets. Comparison of our cell lineage development maps showed that gastruloids closely resembled human natural CS7 gastrula. Our gastruloids exhibited transcriptional characteristics that mimicked the molecular pathways observed in natural embryos development. Importantly, we found that in our model, extraembryonic mesoderm originates from the yolk sac and primordial germ cells originate from the posterior epiblast of the embryonic disc. Moreover, we found that thalidomide affects the differentiation of three germ layer cells, resulting in the arrest of human gastruloid development. In conclusion, by establishing a human gastruloid, we were able to gain valuable insights into the mechanisms responsible for human gastrulation and shed light on the causes of early embryo loss and pregnancy disorders.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3