Cellular Substrate of Eligibility Traces

Author:

Caya-Bissonnette LéaORCID,Naud RichardORCID,Béïque Jean-ClaudeORCID

Abstract

ABSTRACTThe ability of synapses to undergo associative, activity-dependent weight changes constitutes a linchpin of current cellular models of learning and memory. It is, however, unclear whether canonical forms of Hebbian plasticity, which inherently detect correlations of cellular events occurring over short time scales, can solve the temporal credit assignment problem proper to learning driven by delayed behavioral outcomes. Recent evidence supports the existence of synaptic eligibility traces, a time decaying process that renders synapses momentarily eligible for a weight update by a delayed instructive signal. While eligibility traces offer a means of retrospective credit assignment, their material nature is unknown. Here, we combined whole-cell recordings with two-photon uncaging, calcium imaging and biophysical modeling to address this question. We observed and parameterized a form of behavioral timescale synaptic plasticity (BTSP) in layer 5 pyramidal neurons of mice prefrontal areas wherein the pairing of temporally separated pre- and postsynaptic events (0.5 s – 1 s), irrespective of order, induced synaptic potentiation. By imaging calcium in apical oblique dendrites, we reveal a short-term and associative plasticity of calcium dynamics (STAPCD) whose time-dependence mirrored the induction rules of BTSP. We identified a core set of molecular players that were essential for both STAPCD and BTSP and that, together with computational simulations, support a model wherein the dynamics of intracellular handling of calcium by the endoplasmic reticulum (ER) provides a latent memory trace of neural activity that instantiates synaptic weight updates upon a delayed instructive signal. By satisfying the requirements expected of eligibility traces, this mechanism accounts for how individual neurons can conjunctively bind cellular events that are separated by behaviorally relevant temporal delays, and thus offers a cellular model of reinforced learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3