A Generalized Framework for the Calcium Control Hypothesis Describes Weight-Dependent Synaptic Changes in Behavioral Time Scale Plasticity

Author:

Moldwin ToviahORCID,Azran Li Shay,Segev IdanORCID

Abstract

AbstractThe brain modifies synaptic strengths to store new information via long-term potentiation (LTP) and long-term depression (LTD). Evidence has mounted that long-term plasticity is controlled via concentrations of calcium ([Ca2+]) in postsynaptic spines. Several mathematical models describe this phenomenon, including those of Shouval, Bear, and Cooper (SBC) (Shouval et al., 2002, 2010) and Graupner and Brunel (GB)(Graupner & Brunel, 2012). Here we suggest a generalized version of the SBC and GB models, based on a fixed point – learning rate (FPLR) framework, where the synaptic [Ca2+] specifies a fixed point toward which the synaptic weight approaches asymptotically at a [Ca2+]-dependent rate. The FPLR framework offers a straightforward phenomenological interpretation of calcium-based plasticity:the calcium concentration tells the synaptic weight where it is going and how fast it goes there. The FPLR framework can flexibly incorporate various experimental findings, including the existence of multiple regions of [Ca2+] where no plasticity occurs, or plasticity in cerebellar Purkinje cells, where the directionality of calcium-based synaptic changes is thought to be reversed relative to cortical and hippocampal neurons. We also suggest a modeling approach that captures the dependency of late-phase plasticity stabilization on protein synthesis. We demonstrate that due to the asymptotic, saturating nature of synaptic changes in the FPLR rule, the result of frequency- and spike-timing-dependent plasticity protocols are weight-dependent. Finally, we show how the FPLR framework can explain plateau potential-induced place field formation in hippocampal CA1 neurons, also known as behavioral time scale plasticity (BTSP).

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3