Protein-Protein Interaction Prediction is Achievable with Large Language Models

Author:

Hallee LoganORCID,Gleghorn Jason P.ORCID

Abstract

AbstractPredicting protein-protein interactions (PPIs) is vital for elucidating fundamental biology, designing peptide therapeutics, and for high-throughput protein annotation. This is particularly relevant in the current biotechnology landscape characterized by the proliferation of protein generative models, which necessitate a high-throughput and generalized PPI predictor for proteins regardless of conventional motifs or known biological functions. Our work addresses this need and provides strong evidence of the utility and reliability of protein language models (pLMs) in learning the PPI objective. We demonstrated that with the use of a sizable balanced dataset, pLMs achieve state-of-the-art performance metrics in PPI prediction on diverse proteins. To generate a dataset that allows for the approximation of these conditions, we implemented a novel synthetic data generation scheme to augment BIOGRID and Negatome datasets. The enhancement of these datasets was then used to fine-tune ProtBERT for PPI prediction to develop a model that we call SYNTERACT (SYNThetic data-driven protein-protein intERACtion Transformer). Our results are compelling, demonstrating 92% accuracy on validated positive and negative interacting pairs derived from 50 different organisms, all of which were excluded from the training phase. In addition to the high metrics, secondary analysis revealed that our synthetic negative data was able to successfully mimic actual negative samples, further reinforcing the integrity of synthetic data additions to PPI datasets. Another notable discovery was the ease in which previously existing PPI datasets could be predicted with simplistic features, calling into question if they can actually inform PPI prediction. We find that the subcellular compartment bias inherent to the compilation of these datasets is learnable with deep learning methods and demonstrate that our approach is not burdened by this disadvantage.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3