Annotation Vocabulary (Might Be) All You Need

Author:

Hallee LoganORCID,Rafailidis Niko,Horger Colin,Hong DavidORCID,Gleghorn Jason P.ORCID

Abstract

Protein Language Models (pLMs) have revolutionized the computational modeling of protein systems, building numerical embeddings that are centered around structural features. To enhance the breadth of biochemically relevant properties available in protein embeddings, we engineered theAnnotation Vocabulary, a transformer readable language of protein properties defined by structured ontologies. We trainedAnnotation Transformers(AT) from the ground up to recover masked protein property inputs without reference to amino acid sequences, building a new numerical feature space on protein descriptions alone. We leverage AT representations in various model architectures, for both protein representation and generation. To showcase the merit of Annotation Vocabulary integration, we performed 515 diverse downstream experiments. Using a novel loss function and only $3 in commercial compute, our premier representation model CAMP produces state-of-the-art embeddings for five out of 15 common datasets with competitive performance on the rest; highlighting the computational efficiency of latent space curation with Annotation Vocabulary. To standardize the comparison ofde novogenerated protein sequences, we suggest a new sequence alignment-based score that is more flexible and biologically relevant than traditional language modeling metrics. Our generative model, GSM, produces high alignment scores from annotation-only prompts with a BERT-like generation scheme. Of particular note, many GSM hallucinations return statistically significant BLAST hits, where enrichment analysis shows properties matching the annotation prompt even when the ground truth haslowsequence identity to theentiretraining set. Overall, the Annotation Vocabulary toolbox presents a promising pathway to replace traditional tokens with members of ontologies and knowledge graphs, enhancing transformer models in specific domains. The concise, accurate, and efficient descriptions of proteins by the Annotation Vocabulary offers a novel way to build numerical representations of proteins for protein annotation and design.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3