Abstract
AbstractWe previously demonstrated that the NF-κB inhibitor IκBα binds the chromatin together with PRC2 to regulate a subset of developmental- and stem cell-related genes. This alternative function has been elusive in both physiological and disease conditions because of the predominant role of IκBα as a negative regulator of NF-κB.We here uniquely characterize specific residues of IκBα that allow the generation of separation-of-function (SOF) mutants that are defective for either NF-κB-related (SOFΔNF-κB) or chromatin-related (SOFΔH2A,H4) activities. Expression of IκBα SOFΔNF-κB, but not SOFΔH2A/H4, is sufficient to negatively regulate a specific stemness program in intestinal cells, thus rescuing the differentiation blockage imposed by IκBα deficiency. In contrast, full IκBα activity is required for regulating clonogenic/tumor-initiating activity of colorectal cancer cells.Our data indicate that SOF mutants represent an exclusive tool for studying IκBα functions in physiology and disease, and identified IκBα as a robust prognosis biomarker for human cancer.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献