3D spheroid culturing ofAstyanax mexicanusliver-derived cell lines recapitulates distinct transcriptomic and metabolic states ofin vivotissue environment

Author:

Biswas TathagataORCID,Rajendran Naresh,Hassan Huzaifa,Zhao Chongbei,Rohner NicolasORCID

Abstract

AbstractIn vitroassays are crucial tools for gaining detailed insights into various biological processes, including metabolism. Cave morphs of the river-dwelling fish species,Astyanax mexicanus, have adapted their metabolism allowing them to thrive in the biodiversity-deprived and nutrient-limited environment of caves. Liver-derived cells from the cave and river morphs ofAstyanax mexicanushave proven to be excellentin vitroresources to better understand the unique metabolism of these fish. However, the current 2D cultures have not fully captured the complex metabolic profile of theAstyanaxliver. It is known that 3D culturing can modulate the transcriptomic state of cells when compared to its 2D monolayer culture. Therefore, in order to broaden the possibilities of thein vitrosystem by modeling a wider gamut of metabolic pathways, we cultured the liver-derivedAstyanaxcells of both surface and cavefish into 3D spheroids. We successfully established 3D cultures at various cell seeding densities for several weeks and characterized the resultant transcriptomic and metabolic variations. We found that the 3D culturedAstyanaxcells represent a wider range of metabolic pathways, including cell cycle changes and antioxidant activities, associated with liver functioning as compared to its monolayer culture. Additionally, the spheroids also exhibited surface and cave-specific metabolic signatures, making it a suitable system for evolutionary studies associated with cave adaptation. Taken together, the liver-derived spheroids prove to be a promisingin vitromodel for widening our understanding of metabolism inAstyanax mexicanusand of vertebrates in general.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3