Visual-spatial dynamics drive adaptive social learning in immersive environments

Author:

Wu Charley M.ORCID,Deffner Dominik,Kahl Benjamin,Meder Björn,Ho Mark H.,Kurvers Ralf H.J.M.

Abstract

ABSTRACTHumans are uniquely capable social learners. Our capacity to learn from others across short and long timescales is a driving force behind the success of our species. Yet there are seemingly maladaptive patterns of human social learning, characterized by both overreliance and underreliance on social information. Recent advances in animal research have incorporated rich visual and spatial dynamics to study social learning in ecological contexts, showing how simple mechanisms can give rise to intelligent group dynamics. However, similar techniques have yet to be translated into human research, which additionally requires integrating the sophistication of human individual and social learning mechanisms. Thus, it is still largely unknown how humans dynamically adapt social learning strategies to different environments and how group dynamics emerge under realistic conditions. Here, we use a collective foraging experiment in an immersive Minecraft environment to provide unique insights into how visual-spatial interactions give rise to adaptive, specialized, and selective social learning. Our analyses show how groups adapt to the demands of the environment through specialization of learning strategies rather than homogeneity and through the adaptive deployment of selective imitation rather than indiscriminate copying. We test these mechanisms using computational modeling, providing a deeper understanding of the cognitive mechanisms that dynamically influence social decision-making in ecological contexts. All results are compared against an asocial baseline, allowing us to specify specialization and selective attention as uniquely social phenomena, which provide the adaptive foundations of human social learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3