Identification of tumor-specific MHC ligands through improved biochemical isolation and incorporation of machine learning

Author:

Mecklenbräuker Shima,Skoczylas Piotr,Biernat Paweł,Zaghla Badeel,Król-Józaga Bartłomiej,Jasiński Maciej,Pienkowski Victor Murcia,Sanecka-Duin Anna,Popp Oliver,Szatanek Rafał,Mertins Philipp,Kaczmarczyk Jan,Blum Agnieszka,Klatt Martin

Abstract

AbstractIsolation of MHC ligands and subsequent analysis by mass spectrometry is considered the gold standard for defining targets for TCR-T immunotherapies. However, as many targets of high tumor-specificity are only presented at low abundance on the cell surface of tumor cells, the efficient isolation of these peptides is crucial for their successful detection. Here, we demonstrate how different isolation strategies, which consider hydrophobicity and post-translational modifications, can improve the detection of MHC ligands, including cysteinylated MHC ligands from cancer germline antigens or point-mutated neoepitopes. Furthermore, we developed a novel MHC class I ligand prediction algorithm (ARDisplay-I) that outperforms the current state-of-the-art and facilitates the assignment of peptides to the correct MHC allele. The model has other applications, such as the identification of additional MHC ligands not detected from mass spectrometry or determining whether the MHC ligands can be presented on the cell surface via MHC alleles not included in the study. The implementation of these strategies can augment the development of T cell receptor-based therapies (i.a. TIL1-derived T cells, genetically engineered T cells expressing tumor recognizing receptors or TCR-mimic antibodies) by facilitating the identification of novel immunotherapy targets and by enriching the resources available in the field of computational immunology.Significance:This study demonstrates how the isolation of different tumor-specific MHC ligands can be optimized when considering their hydrophobicity and post-translational modification status. Additionally, we developed a novel machine-learning model for the probability prediction of the MHC ligands’ presentation on the cell surface. The algorithm can assign these MHC ligands to their respective MHC alleles which is essential for the design of TCR-T immunotherapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3