Re-annotation of SARS-CoV-2 proteins using an HHpred-based approach opens new opportunities for a better understanding of this virus

Author:

Brézellec Pierre

Abstract

AbstractSince the publication of the genome of SARS-CoV-2 – the causative agent of COVID-19 – in January 2020, many bioinformatic tools have been applied to annotate its proteins. Although effcient methods have been used, such as the identification of protein domains stored in Pfam, most of the proteins of this virus have no detectable homologous protein domains outside the viral taxa. As it is now well established that some viral proteins share similarities with proteins of their hosts, we decided to explore the hypothesis that this lack of homologies could be, at least in part, the result of the documented loss of sensitivity of Pfam Hidden Markov Models (HMMs) when searching for domains in “divergent organisms”. In order to improve the annotation of SARS-CoV-2 proteins, we used the HHpred protein annotation tool. To avoid “false positive predictions” as much as possible, we designed a robustness procedure to evaluate the HHpred results. In total, 6 robust similarities involving 6 distinct SARS-CoV-2 proteins were detected. Of these 6 similarities, 3 are already known and well documented, and one is in agreement with recent crystallographic results. We then examined carefully the two similarities that have not yet been reported in the literature. We first show that the C-terminal part of Spike S (the protein that binds the virion to the cell membrane by interacting with the host receptor, triggering infection) has similarities with the human prominin-1/CD133; after reviewing what is known about prominin-1/CD133, we suggest that the C-terminal part of Spike S could both improve the docking of Spike S to ACE2 (the main cell entry receptor for SARS-CoV-2) and be involved in the delivery of virions to regions where ACE2 is located in cells. Secondly, we show that the SARS-CoV-2 ORF3a protein shares similarities with human G protein-coupled receptors (GPCRs) belonging mainly to the “Rhodopsin family”; on the basis of the literature, we then show that specific G protein-coupled receptors (GPCRs) of this family are known to form ion channels; we emphasize this is consistent with a recent Cryo-EM structure of SARS-CoV-2 ORF3a suggesting that it can form a non-selective Ca2+-permeable cation channel; furthermore, we highlight that some of the GPCRs identified as sharing similarities with ORF3a are targeted by antibodies in patients with COVID-19 and Long-COVID, suggesting that these similarities may trigger some of the observed autoimmune responses. We conclude that the approach described here (or similar approaches) opens up new avenues of research to better understand SARS-CoV-2 and could be used to complement virus annotations, particularly for less-studied viruses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3