Fine-scale congruence in bacterial community structure from marine sediments sequenced by short-reads on Illumina and long-reads on Nanopore

Author:

Lemoinne Alice,Dirberg Guillaume,Georges Myriam,Robinet TonyORCID

Abstract

AbstractFollowing the development of high-throughput sequencers, environmental prokaryotic communities are usually described by metabarcoding with genetic markers on the 16S domain. However, short-read sequencing encounters a limitation in phylogenetic coverage and taxonomic resolution, due to the primers choice and read length. On these critical points, nanopore sequencing, a rising technology, suitable for long-read metabarcoding, was much undervalued because of its relatively higher error rate per read. Here we compared the prokaryotic community structure in a mock community and 52 sediment samples from two contrasted mangrove sites, described by short-reads on 16SV4-V5 marker (ca. 0.4kpb) analyzed by Illumina sequencing (MiSeq, V3), with those described by long-reads on bacterial nearly complete 16S (ca. 1.5 kpb) analyzed by Oxford Nanopore (MinION, R9.2). Short- and long-reads retrieved all the bacterial genera from the mock, although both showing similar deviations from the awaited proportions. From the sediment samples, with a coverage-based rarefaction of reads and after singletons filtering, co-inertia and Procrustean tests showed that bacterial community structures inferred from short- and long-reads were significantly similar, showing both a comparable contrast between sites and a coherent sea-land orientation within sites. In our dataset, 84.7 and 98.8% of the short-reads were assigned strictly to the same species and genus, respectively, than those detected by long-reads. Primer specificities of long-16S allowed it to detect 92.2% of the 309 families and 87.7% of the 448 genera that were detected by the short 16SV4-V5. Long-reads recorded 973 additional taxa not detected by short-reads, among which 91.7% were identified to the genus rank, some belonging to 11 exclusive phyla, albeit accounting for only 0.2% of total long-reads.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3