The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability.

Author:

Lange R,Hengge-Aronis R

Abstract

The second vegetative sigma factor sigma S (encoded by the rpoS gene) is the master regulator in a complex regulatory network that governs the expression of many stationary phase-induced and osmotically regulated genes in Escherichia coli. Using a combination of gene-fusion technology and quantitative immunoblot, pulse-labeling, and immunoprecipitation analyses, we demonstrate here that rpoS/sigma S expression is not only transcriptionally controlled, but is also extensively regulated at the levels of translation and protein stability. rpoS transcription is inversely correlated with growth rate and is negatively controlled by cAMP-CRP. In complex medium rpoS transcription is stimulated during entry into stationary phase, whereas in minimal media, it is not significantly induced. rpoS translation is stimulated during transition into stationary phase as well as by an increase in medium osmolarity. A model involving mRNA secondary structure is suggested for this novel type of post-transcriptional growth phase-dependent and osmotic regulation. Furthermore, sigma S is a highly unstable protein in exponentially growing cells (with a half-life of 1.4 min), that is stabilized at the onset of starvation. When cells are grown in minimal glucose medium, translational induction and sigma S stabilization occur in a temporal order with the former being stimulated already in late exponential phase and the latter taking place at the onset of starvation. Although sigma S does not control its own transcription, it is apparently indirectly involved in a negative feedback control that operates on the post-transcriptional level. Our analysis also indicates that at least five different signals [cAMP, a growth rate-related signal (ppGpp?), a cell density signal, an osmotic signal, and a starvation signal] are involved in the control of all these processes that regulate rpoS/sigma S expression.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3