The timing of transcription of RpoS-dependent genes varies across multiple stresses in Escherichia coli K-12

Author:

Adams Josephine1,Hoang Johnson1,Petroni Emily1,Ashby Ethan2,Hardin Johanna2,Stoebel Daniel M.1ORCID

Affiliation:

1. Department of Biology, Harvey Mudd College , Claremont, California, USA

2. Department of Mathematics and Statistics, Pomona College , Claremont, California, USA

Abstract

ABSTRACT The alternative sigma factor RpoS regulates transcription of over 1,000 genes in Escherichia coli in response to many different stresses. RpoS levels rise continuously after exposure to stress, and the consequences of changing levels of RpoS for the temporal patterns of expression of RpoS-regulated genes have not been described. We measured RpoS levels at various times during the entry to stationary phase, or in response to high osmolarity or low temperature, and found that the time required to reach maximum levels varied by several hours. We quantified the transcriptome across these stresses using RNA-seq. The number of differentially expressed genes differed among stresses, with 1,379 DE genes identified in stationary phase, 633 in high osmolarity, and 302 in cold shock. To quantify the timing of gene expression, we fit sigmoid or double sigmoid models to differentially expressed genes in each stress. During the entry into stationary phase, genes whose expression rose earlier tended to be those that had been found to respond most strongly to low levels of RpoS. The timing of individual gene’s expression was not correlated across stresses. Taken together, our results demonstrate E. coli activates RpoS with different timing in response to different stresses, which in turn generates a unique pattern of timing of the transcription response to each stress. IMPORTANCE Bacteria adapt to changing environments by altering the transcription of their genes. Specific proteins can regulate these changes. This study explored how a single protein called RpoS controls how many genes change expression during adaptation to three stresses. We found that: (i) RpoS is responsible for activating different genes in different stresses; (ii) that during a stress, the timing of gene activation depends on the what stress it is; and (iii) that how much RpoS a gene needs in order to be activated can predict when that gene will be activated during the stress of stationary phase.

Funder

National Science Foundation

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RpoS and the bacterial general stress response;Microbiology and Molecular Biology Reviews;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3