Human Nerve-on-a-Chip. Engineering 3D functional human peripheral nerve in vitro

Author:

Sharma Anup D.ORCID,McCoy Laurie,Jacobs Elizabeth,Willey Hannah,Behn Jordan Q.,Ngyuen Hieu,Bolon Brad,Curley J. Lowry,Moore Michael J.

Abstract

AbstractDevelopment of “organ-on-a-chip” systems in the space of the nervous system is lagging because of lack of availability of human neuronal & glial cells and the structural complexity of the nervous system. Furthermore, a sizeable challenge in the drug development pipeline and an often-cited reason for failure in a vast number of clinical trials conducted for neuropathological ailments is the lack of translation from animal models. A preclinical in vitro model capable of mimicking the function and structure of the human nervous system is well desired. We present an in vitro biomimetic model of all-human peripheral nerve tissue capable of showing a robust neurite outgrowth (~5mm), myelination of human induced pluripotent stem cells (iPSCs)-derived neurons by primary human Schwann cells and evaluation of nerve conduction velocity (NCV), previously unrealized for any human cell-based in vitro system. This Human Nerve-on-a-chip (HNoaC) system is the first microphysiological system of human peripheral nerve which can be used for evaluating electrophysiological and histological metrics, which are gold-standard assessment techniques previously only possible with in vivo studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3