Human intestinal enteroids with inducible neurogenin-3 expression as a novel model of gut hormone secretion

Author:

Chang-Graham Alexandra L.,Danhof Heather A.,Engevik Melinda A.,Tomaro-Duchesneau Catherine,Karandikar Umesh C.,Estes Mary K.,Versalovic James,Britton Robert A.,Hyser Joseph M.

Abstract

AbstractBackgroundEnteroendocrine cells (EECs) are specialized epithelial cells that produce molecules vital for intestinal homeostasis, but due to their limited numbers, in-depth functional studies have remained challenging. Human intestinal enteroids (HIEs) that are derived from intestinal crypt stem cells are a biologically relevantin vitromodel of the intestinal epithelium. HIEs contain all intestinal epithelial cell types; however, like the intestine, HIEs spontaneously produce few EECs, which limits their study.MethodsTo increase the number of EECs in HIEs, we used lentivirus transduction to stably engineer jejunal HIEs with doxycycline-inducible expression of neurogenin-3 (NGN3), a transcription factor that drives EEC differentiation (tetNGN3-HIEs). We examined the impact ofNGN3induction on EECs by quantifying the increase in the enterochromaffin cells and other EEC subtypes. We functionally assessed secretion of serotonin and EEC hormones in response to norepinephrine and rotavirus infection.ResultsTreating tetNGN3-HIEs with doxycycline induced a dose-dependent increase of chromogranin A (ChgA)-positive and serotonin-positive cells, demonstrating increased enterochromaffin cell differentiation. Despite increased ChgA-positive cells, other differentiated cell types of the epithelium remained largely unchanged by gene expression and immunostaining. RNA sequencing of doxycycline-induced tetNGN3- HIEs identified increased expression of key hormones and enzymes associated with several other EEC subtypes. Doxycycline-induced tetNGN3-HIEs secreted serotonin, monocyte chemoattractant protein-1, glucose-dependent insulinotropic peptide, peptide YY, and ghrelin in response to norepinephrine and rotavirus infection, further supporting the presence of multiple EEC types.ConclusionsWe have combined HIEs and inducible-NGN3expression to establish a flexiblein vitromodel system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of EECs.SynopsisEnteroendocrine cells have low abundance but exert widespread effects on gastrointestinal physiology. We engineered human intestinal enteroids with inducible expression of neurogenin-3, resulting in increased enteroendocrine cells and facilitating investigations of host responses to the dynamic intestinal environment.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

1. Origin of regional and species differences in intestinal glucose uptake;Am J Physiol,1989

2. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species

3. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity;Mucosal Immunol,2018

4. Minireview: Development and Differentiation of Gut Endocrine Cells

5. The gut as the largest endocrine organ in the body;Ann Oncol,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3