Energy contributions of volatile fatty acids from the gastrointestinal tract in various species

Author:

Bergman E. N.1

Affiliation:

1. Department of Physiology, New York State College of VeterinaryMedicine, Cornell University, Ithaca.

Abstract

The VFA, also known as short-chain fatty acids, are produced in the gastrointestinal tract by microbial fermentation of carbohydrates and endogenous substrates, such as mucus. This can be of great advantage to the animal, since no digestive enzymes exist for breaking down cellulose or other complex carbohydrates. The VFA are produced in the largest amounts in herbivorous animal species and especially in the forestomach of ruminants. The VFA, however, also are produced in the lower digestive tract of humans and all animal species, and intestinal fermentation resembles that occurring in the rumen. The principal VFA in either the rumen or large intestine are acetate, propionate, and butyrate and are produced in a ratio varying from approximately 75:15:10 to 40:40:20. Absorption of VFA at their site of production is rapid, and large quantities are metabolized by the ruminal or large intestinal epithelium before reaching the portal blood. Most of the butyrate is converted to ketone bodies or CO2 by the epithelial cells, and nearly all of the remainder is removed by the liver. Propionate is similarly removed by the liver but is largely converted to glucose. Although species differences exist, acetate is used principally by peripheral tissues, especially fat and muscle. Considerable energy is obtained from VFA in herbivorous species, and far more research has been conducted on ruminants than on other species. Significant VFA, however, are now known to be produced in omnivorous species, such as pigs and humans. Current estimates are that VFA contribute approximately 70% to the caloric requirements of ruminants, such as sheep and cattle, approximately 10% for humans, and approximately 20-30% for several other omnivorous or herbivorous animals. The amount of fiber in the diet undoubtedly affects the amount of VFA produced, and thus the contribution of VFA to the energy needs of the body could become considerably greater as the dietary fiber increases. Pigs and some species of monkey most closely resemble humans, and current research should be directed toward examining the fermentation processes and VFA metabolism in those species. In addition to the energetic or nutritional contributions of VFA to the body, the VFA may indirectly influence cholesterol synthesis and even help regulate insulin or glucagon secretion. In addition, VFA production and absorption have a very significant effect on epithelial cell growth, blood flow, and the normal secretory and absorptive functions of the large intestine, cecum, and rumen. The absorption of VFA and sodium, for example, seem to be interdependent, and release of bicarbonate usually occurs during VFA absorption.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3