Drug-Target Interaction prediction using Multi-Graph Regularized Deep Matrix Factorization

Author:

Mongia AanchalORCID,Majumdar Angshul

Abstract

AbstractDrug discovery is an important field in the pharmaceutical industry with one of its crucial chemogenomic process being drug-target interaction prediction. This interaction determination is expensive and laborious, which brings the need for alternative computational approaches which could help reduce the search space for biological experiments. This paper proposes a novel framework for drug-target interaction (DTI) prediction: Multi-Graph Regularized Deep Matrix Factorization (MGRDMF). The proposed method, motivated by the success of deep learning, finds a low-rank solution which is structured by the proximities of drugs and targets (drug similarities and target similarities) using deep matrix factorization. Deep matrix factorization is capable of learning deep representations of drugs and targets for interaction prediction. It is an established fact that drug and target similarities incorporation preserves the local geometries of the data in original space and learns the data manifold better. However, there is no literature on which the type of similarity matrix (apart from the standard biological chemical structure similarity for drugs and genomic sequence similarity for targets) could best help in DTI prediction. Therefore, we attempt to take into account various types of similarities between drugs/targets as multiple graph Laplacian regularization terms which take into account the neighborhood information between drugs/targets. This is the first work which has leveraged multiple similarity/neighborhood information into the deep learning framework for drug-target interaction prediction. The cross-validation results on four benchmark data sets validate the efficacy of the proposed algorithm by outperforming shallow state-of-the-art computational methods on the grounds of AUPR and AUC.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3