The first days in the life of naïve human B-lymphocytes infected with Epstein-Barr virus

Author:

Pich Dagmar,Mrozek-Gorska Paulina,Bouvet Mickaël,Sugimoto Atsuko,Akidil Ezgi,Grundhoff Adam,Hamperl Stephan,Ling Paul D.,Hammerschmidt WolfgangORCID

Abstract

AbstractEpstein-Barr virus (EBV) infects and activates resting human B-lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cellsin vitroare known, but their functions in the early, pre-latent phase of infection have not been investigated systematically. In studies during the first eight days of infection using derivatives of EBV with mutations in single genes of EBVs we found only EBNA2 to be essential for activating naïve human B-lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, LMP2A and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding EBER RNAs had no discernable phenotype compared with wild-type EBV. B cells infected with a double mutant of EBNA3A and 3C had an unexpected proliferative advantage and did not regulate the DNA damage response (DDR) of the infected host cell in the pre-latent phase. Even EBNA1 which has very critical long-term functions in maintaining and replicating the viral genomic DNA in established cell lines, was dispensable for the early activation of infected cells. Our findings document that the virus dose is a critical parameter and indicate that EBNA2 governs the infected cells initially and implements a strictly controlled temporal program independent of other viral latent genes. It thus appears that EBNA2 is sufficient to control all requirements for clonal cellular expansion and to reprogram human B-lymphocytes from energetically quiescent to activated cells.Author summaryThe preferred target of Epstein-Barr virus (EBV) are human resting B-lymphocytes. We found that their infection induces a well-coordinated, time-driven program that starts with a substantial increase in cell volume followed by cellular DNA synthesis after three days and subsequent rapid rounds of cell divisions on the next day accompanied by some DNA replication stress (DRS). Two to three days later the cells decelerate and turn into stably proliferating lymphoblast cell lines. With the aid of 16 different recombinant EBV strains we investigated the individual contributions of EBV’s multiple latent genes during early B-cell infection and found that many do not exert a detectable phenotype or contribute little to EBV’s pre-latent phase. The exception is EBNA2 that is essential in governing all aspects of B-cell reprogramming. EBV relies on EBNA2 to turn the infected B-lymphocytes into proliferating lymphoblasts preparing the infected host cell for the ensuing stable, latent phase of viral infection. In the early steps of B-cell reprogramming viral latent genes other than EBNA2 are dispensable but some, EBNA-LP for example, support the viral program and presumably stabilize the infected cells once viral latency is established.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3