Epstein-Barr virus reprograms human B-lymphocytes immediately in the pre-latent phase of infection

Author:

Mrozek-Gorska PaulinaORCID,Buschle AlexanderORCID,Pich Dagmar,Schwarzmayr Thomas,Fechtner RonORCID,Scialdone AntonioORCID,Hammerschmidt WolfgangORCID

Abstract

AbstractEpstein-Barr virus (EBV) is a human tumor virus and a model of herpesviral latency. The virus efficiently infects resting human B-lymphocytes and induces their continuous proliferation in vitro, which mimics certain aspects of EBV’s oncogenic potential in vivo. This seminal finding was made 50 years ago, but how EBV activates primary human B-lymphocytes and how lymphoblastoid cell lines (LCLs) evolve from the EBV-infected lymphocytes is uncertain. We conducted a systematic time-resolved longitudinal study of cellular functions and transcriptional profiles of newly infected naïve primary B-lymphocytes. EBV reprograms these human cells comprehensively and globally. Rapid and extensive transcriptional changes occur within 24 hours of infection and precede any metabolic and phenotypic changes. Within the next 48 hours, the virus activates the cells, changes their phenotypes with respect to cell size, RNA and protein content and induces metabolic pathways to cope with the increased demand for energy, supporting an efficient cell cycle entry on day three post infection. The transcriptional program that EBV initiates consists of three waves of clearly discernable clusters of cellular genes that peak on day one, two, or three and regulate RNA synthesis, metabolic pathways and cell division, respectively. Upon the onset of cell doublings on day four the cellular transcriptome appears to be completely reprogrammed to support the activated and proliferating cell, but three additional clusters of EBV regulated genes adjust the infected immune cells to fine-tune cell signaling, migration, and immune response pathways, eventually. Our study reveals that more than 98 % of the 13,000 expressed genes in B-lymphocytes are regulated upon infection demonstrating that EBV governs the entire biology of its target cell.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3