The Complex Ecosystem in Non Small Cell Lung Cancer Invasion

Author:

Haney Seth,Konen Jessica,Marcus Adam I.,Bazhenov Maxim

Abstract

AbstractMany tumors are characterized by genetic instability, producing an assortment of genetic variants of tumor cells called subclones. These tumors and their surrounding environments form complex multi-cellular ecosystems, where subclones compete for resources and cooperate to perform multiple tasks, including cancer invasion. Our recent empirical studies revealed existence of such distinct phenotypes of cancer cells, leaders and followers, in lung cancer. These two cellular subclones exchange a complex array of extracellular signals demonstrating a symbiotic relationship at the cellular level. Here, we develop a computational model of the microenvironment of the lung cancer ecosystem to explore how the interactions between subclones can advance or inhibit invasion. We found that, due to the complexity of the ecosystem, invasion may have very different dynamics characterized by the different levels of aggressiveness. By altering the signaling environment, we could alter the ecological relationship between the cell types and the overall ecosystem development. Competition between leader and follower cell populations (defined by the limited amount of resources), positive feedback within the leader cell population (controlled by the focal adhesion kinase and fibronectin signaling), and impact of the follower cells to the leaders (represented by yet undetermined proliferation signal) all had major effects on the outcome of the collective dynamics. Specifically, our analysis revealed a class of tumors (defined by the strengths of fibronectin signaling and competition) that are particularly sensitive to manipulations of the signaling environment. This class can undergo irreversible changes to the tumor ecosystem that outlast these manipulations of feedbacks and have a profound impact on invasive potential. Our study predicts a complex division of labor between cancer cell subclones and suggests new treatment strategies targeting signaling within the tumor ecosystem.Author SummaryCancer is an elusive disease due to the wide variety of cancer types and adaptability to treatment. How is this adaptability accomplished? Loss of genetic stability, a hallmark of cancer, leads to the emergence of many different types of cancer cells within a tumor. This creates a complex ecosystem where cancer cell types can cooperate, compete, and exploit each other. We have previously used an image-guided technology to isolatedistinct cancer subclones and identify how they interact. Here, we have employed mathematical modeling to understand how the dynamic feedbacks between different cancer cell types can impact the success of invasion in lung cancer. We found that successful invasion required for feedbacks to support the less viable but more invasive cell types. These predictions may have implications for novel clinical treatment options and emphasize the need to visualize and probe cancer as a tumor ecosystem.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3