Evolutionary dynamics of abundant 7 bp satellites in the genome ofDrosophila virilis

Author:

Flynn Jullien M.ORCID,Long Manyuan,Wing Rod A.,Clark Andrew G.ORCID

Abstract

AbstractThe factors that drive the rapid changes in satellite DNA genomic composition we see in eukaryotes are not well understood.Drosophila virilishas one of the highest relative amounts of simple satellites of any organism that has been studied, with an estimated >40% of its genome composed of a few related 7 bp satellites. Here we useD. virilisas a model to understand technical biases affecting satellite sequencing and the evolutionary processes that drive satellite composition. By analyzing sequencing data from Illumina, PacBio, and Nanopore platforms, we identify platform-specific biases and suggest best practices for accurate characterization of satellites by sequencing. We use comparative genomics and cytogenetics to demonstrate that the highly abundant satellite family arose from a related satellite in the branch leading to the virilis phylad 4.5 - 11 million years ago before exploding in abundance in some species of the clade. The most abundant satellite is conserved in sequence and location in the pericentromeric region but has diverged widely in abundance among species, whereas the satellites nearest the centromere are rapidly turning over in sequence composition. By analyzing multiple strains ofD. virilis, we saw that one centromere-proximal satellite is increasing in abundance along a geographical gradient while the other is contracting in an anti-correlated manner, suggesting ongoing conflicts at the centromere. In conclusion, we illuminate several key attributes of satellite evolutionary dynamics that we hypothesize to be driven by processes like selection, meiotic drive, and constraints on satellite sequence and abundance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3