Author:
Wang Yujie,Song Ting,Li Kaiwu,Jin Yuan,Yue Junjie,Ren Hongguang,Liang Long
Abstract
AbstractDifferent subtypes of Influenza A viruses cause different pathogenic phenotypes after infecting human bodies. Direct binary interactions between viral proteins and human proteins provide an important background for influenza viruses to cause complex pathologies of hosts. Here, we demonstrated the different impacts on the TNF-α-induced NF-κB activation of H1N1 and H5N1 virus proteins. By further examining the virus-host protein-protein interactions (PPI), we found that the same segment protein of the H1N1 and H5N1 viruses target on different host proteins. We then performed a yeast two-hybrid analysis of a highly pathogenic avian H5N1 influenza virus and human proteins. Influenza-host protein-protein interaction networks of three strains of influenza A viruses (including two other reported influenza-host PPI networks) were systematically compared and mapped on the network level and the pathway level. The results show subtype-specific characters of the influenza-host protein interactome, which may response for the specific pathogenic mechanisms of different subtypes of influenza viruses.ImportanceInfluenza A virus (IAV) can cause contagious respiratory illness, namely influenza (flu). The symptoms of infections from different subtypes of IAVs vary from mild to severe illness. The mechanism of these different pathogenic phenotypes remains poorly understood. Our results show that the same NA and NP segments from H1N1 and H5N1 virus cause different impacts on the TNF-α-induced NF-κB pathway. Furthermore, we generated a yeast two-hybrid protein-protein interaction (PPI) network between H5N1 and human proteins. By systematically comparing the influenza-host PPI networks of three strains of IAVs, we show that different subtypes of IAVs target different human proteins and pathways, which may have led to different pathogenic phenotypes.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献