A Rapid Detection Method for H3 Avian Influenza Viruses Based on RT–RAA

Author:

Li Jiaqi1,Cui Huan12,Zhang Yuxin1,Wang Xuejing3,Liu Huage3,Mu Yingli1,Wang Hongwei1,Chen Xiaolong1,Dong Tongchao1,Zhang Cheng12,Chen Ligong1

Affiliation:

1. College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China

2. Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China

3. The Animal Husbandry and Veterinary Institute of Hebei, Baoding, 071001, China

Abstract

The continued evolution of H3 subtype avian influenza virus (AIV)—which crosses the interspecific barrier to infect humans—and the potential risk of genetic recombination with other subtypes pose serious threats to the poultry industry and human health. Therefore, rapid and accurate detection of H3 virus is highly important for preventing its spread. In this study, a method based on real-time reverse transcription recombinase-aided isothermal amplification (RT–RAA) was successfully developed for the rapid detection of H3 AIV. Specific primers and probes were designed to target the hemagglutinin (HA) gene of H3 AIV, ensuring highly specific detection of H3 AIV without cross-reactivity with other important avian respiratory viruses. The results showed that the detection limit of the RT–RAA fluorescence reading method was 224 copies/response within the 95% confidence interval, while the detection limit of the RT–RAA visualization method was 1527 copies/response within the same confidence interval. In addition, 68 clinical samples were examined and the results were compared with those of real-time quantitative PCR (RT–qPCR). The results showed that the real-time fluorescence RT–RAA and RT–qPCR results were completely consistent, and the kappa value reached 1, indicating excellent correlation. For visual detection, the sensitivity was 91.43%, the specificity was 100%, and the kappa value was 0.91, which also indicated good correlation. In addition, the amplified products of RT–RAA can be visualized with a portable blue light instrument, which enables rapid detection of H3 AIV even in resource-constrained environments. The H3 AIV RT-RAA rapid detection method established in this study can meet the requirements of basic laboratories and provide a valuable reference for the early diagnosis of H3 AIV.

Funder

Hebei Agricultural University

Hebei Province Central Guide Local Science and Technology special project

Key Research and Development Program of Hebei Province

Hebei Agriculture Research System

Shijiazhuang Science and Technology Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3