Mechanisms of human dynamic object recognition revealed by sequential deep neural networks

Author:

Sörensen Lynn K. A.ORCID,Bohté Sander M.ORCID,de Jong DorinaORCID,Slagter Heleen A.ORCID,Scholte H. StevenORCID

Abstract

AbstractHumans can rapidly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N=36) and were predictive of trial-by-trial responses across image durations (13-80 ms/image) while also displaying a temporal correspondence. Augmenting this model with adaptation markedly improved dynamic recognition and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. These findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3