Empirically Identifying and Computationally Modeling the Brain–Behavior Relationship for Human Scene Categorization

Author:

Karapetian Agnessa123ORCID,Boyanova Antoniya1,Pandaram Muthukumar3,Obermayer Klaus2345ORCID,Kietzmann Tim C.6ORCID,Cichy Radoslaw M.1235ORCID

Affiliation:

1. Freie Universität Berlin, Germany

2. Charité – Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Germany

3. Bernstein Center for Computational Neuroscience Berlin, Germany

4. Technische Universität Berlin, Germany

5. Humboldt-Universität zu Berlin, Germany

6. Universität Osnabrück, Germany

Abstract

Abstract Humans effortlessly make quick and accurate perceptual decisions about the nature of their immediate visual environment, such as the category of the scene they face. Previous research has revealed a rich set of cortical representations potentially underlying this feat. However, it remains unknown which of these representations are suitably formatted for decision-making. Here, we approached this question empirically and computationally, using neuroimaging and computational modeling. For the empirical part, we collected EEG data and RTs from human participants during a scene categorization task (natural vs. man-made). We then related EEG data to behavior to behavior using a multivariate extension of signal detection theory. We observed a correlation between neural data and behavior specifically between ∼100 msec and ∼200 msec after stimulus onset, suggesting that the neural scene representations in this time period are suitably formatted for decision-making. For the computational part, we evaluated a recurrent convolutional neural network (RCNN) as a model of brain and behavior. Unifying our previous observations in an image-computable model, the RCNN predicted well the neural representations, the behavioral scene categorization data, as well as the relationship between them. Our results identify and computationally characterize the neural and behavioral correlates of scene categorization in humans.

Funder

Einstein Center for Neuroscience

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

MIT Press

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3