Drought selection on Arabidopsis populations and their microbiomes

Author:

Karasov Talia L.ORCID,Neumann ManuelaORCID,Shirsekar GautamORCID,Monroe GreyORCID,Weigel DetlefORCID,Schwab Rebecca,

Abstract

SummaryMicrobes affect plant health, stress tolerance1 and life history2. In different regions of the globe, plants are colonized by distinct pathogenic and commensal microbiomes, but the factors driving their geographic variation are largely unknown3. We identified and measured the core leaf microbiome of Arabidopsis thaliana in its native range, from almost 300 populations across Europe. Comparing the distribution of the approximately 500 major bacterial phylotypes, we discovered marked, geography-dependent differences in microbiome composition within A. thaliana and between A. thaliana and other Brassicaceae, with two distinct microbiome types segregating along a latitudinal gradient. The differences in microbiome composition mirror the spatial genetics of A. thaliana, with 52-68% of variance in the first two principal coordinates of microbiome type explained by host genotype. Microbiome composition is best predicted by drought-associated metrics that are well known to be a major selective agent on A. thaliana populations. The reproducible and predictable associations between specific microbes and water availability raise the possibility that drought not only directly shapes genetic variation in A. thaliana, but does so also indirectly through its effects on the leaf microbiome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3