Single-chain and condensed-state behavior of hnRNPA1 from molecular simulations

Author:

Bauer D. Janka,Stelzl Lukas S.,Nikoubashman Arash

Abstract

Intrinsically disordered proteins (IDPs) are essential components for the formation of membraneless organelles, which play key functional and regulatory roles within biological systems. These complex assemblies form and dissolve spontaneously over time via liquid-liquid phase separation of IDPs. Mutations in their amino acid sequence can alter their phase behavior, which has been linked to the emergence of severe diseases such as cancer and neurodegenerative diseases including amyotrophic lateral sclerosis. In this work, we study the conformation and phase behavior of a low-complexity domain of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), using coarse-grained implicit solvent molecular dynamics simulations. We systematically analyze how these properties are affected by the number of aromatic residues within the examined sequences. We find a significant compaction of the chains and an increase in the critical temperature with increasing number of aromatic residues within the IDPs. Comparing single-chain and condensed state simulations, we find much more collapsed polymer conformations in the dilute systems, even at temperatures well above the estimated θ-temperature of the solution. These observations strongly support the hypothesis that aromatic residues play a dominant role for condensation, which is further corroborated by a detailed analysis of the intermolecular contacts, and conversely that important properties of condensates are captured in coarse-grained simulations. Interestingly, we observe density inhomogeneities within the condensates near criticality, which are driven by electrostatic interactions. Finally, we find that the relatively small fraction of hydrophobic residues in the IDPs results in interfacial tensions which are significantly lower compared to typical combinations of immiscible simple liquids.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3