Dynamic rewiring of electrophysiological brain networks during learning

Author:

Ruggeri PaoloORCID,Miehlbradt JeniferORCID,Kabbara Aya,Hassan MahmoudORCID

Abstract

ABSTRACTHuman learning is an active and complex process. However, the brain mechanisms underlying human skill learning and the effect of learning on the communication between brain regions, at different frequency bands, are still largely unknown. Here, we tracked changes in large-scale electrophysiological networks over a 6-week training period during which participants practiced a series of motor sequences during 30 home training sessions. Our findings showed that brain networks become more flexible with learning in all the frequency bands from theta to gamma ranges. We found consistent increase of flexibility in the prefrontal and limbic areas in the theta and alpha band, and over somatomotor and visual areas in the alpha band. Specific to the beta rhythm, we revealed that higher flexibility of prefrontal regions during the early stage of learning strongly correlated with better performance measured during home training sessions. Our findings provide novel evidence that prolonged motor skill practice results in higher, frequency-specific, temporal variability in brain network structure.AUTHOR SUMMARYWe investigated the large-scale organization of electrophysiological brain networks of a cohort of 30 participants practicing a series of motor sequences during 6 weeks of training. With learning, we observed a progressive modulation of the dynamics of prefrontal and limbic regions from theta to alpha frequencies, and of centro-parietal and occipital regions within visuomotor networks in the alpha band. In addition, higher prefrontal regional flexibility during early practice correlated with learning occurring during the 6 weeks of training. This provides novel evidence of a frequency-specific reorganization of brain networks with prolonged motor skill learning and an important neural basis for non-invasive research into the role of cortical functional interactions in (visuo)motor learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3