Efficient evolution of human antibodies from general protein language models and sequence information alone

Author:

Hie Brian L.ORCID,Xu Duo,Shanker Varun R.,Bruun Theodora U.J.,Weidenbacher Payton A.,Tang ShaogengORCID,Kim Peter S.ORCID

Abstract

AbstractNatural evolution must explore a vast landscape of possible sequences for desirable yet rare mutations, suggesting that learning from natural evolutionary strategies could accelerate artificial evolution. Here, we report that deep learning algorithms known as protein language models can evolve human antibodies with high efficiency, despite providing the models with no information about the target antigen, binding specificity, or protein structure, and also requiring no additional task-specific finetuning or supervision. We performed language-model-guided affinity maturation of seven diverse antibodies, screening 20 or fewer variants of each antibody across only two rounds of evolution. Our evolutionary campaigns improved the binding affinities of four clinically relevant antibodies up to 7-fold and three unmatured antibodies up to 160-fold across diverse viral antigens, with many designs also demonstrating improved thermostability and viral neutralization activity. Notably, our algorithm requires only a single wildtype sequence and computes recommended amino acid changes in less than a second. Moreover, the same models that improve antibody binding also guide efficient evolution across diverse protein families and selection pressures, indicating that these results generalize to many natural settings. Contrary to prevailing notions of evolution as difficult and resource-intensive, our results suggest that when constrained to a narrow manifold of evolutionary plausibility, evolution can become much easier, which we refer to as the “efficient manifold hypothesis.”

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3