Evaluating the representational power of pre-trained DNA language models for regulatory genomics

Author:

Tang ZiqiORCID,Koo Peter KORCID

Abstract

ABSTRACTThe emergence of genomic language models (gLMs) offers an unsupervised approach to learn a wide diversity ofcis-regulatory patterns in the non-coding genome without requiring labels of functional activity generated by wet-lab experiments. Previous evaluations have shown pre-trained gLMs can be leveraged to improve prediction performance across a broad range of regulatory genomics tasks, albeit using relatively simple benchmark datasets and baseline models. Since the gLMs in these studies were tested upon fine-tuning their weights for each downstream task, determining whether gLM representations embody a foundational understanding ofcis-regulatory biology remains an open question. Here we evaluate the representational power of pre-trained gLMs to predict and interpret cell-type-specific functional genomics data that span DNA and RNA regulation. Our findings suggest that current gLMs do not offer substantial advantages over conventional machine learning approaches that use one-hot encoded sequences. This work highlights a major limitation with current gLMs, raising potential issues in conventional pre-training strategies for the non-coding genome.

Publisher

Cold Spring Harbor Laboratory

Reference84 articles.

1. Devlin, J. et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 1810.04805 (2018).

2. OpenAI. Gpt-4 technical report. arXiv 2303.08774 (2023).

3. Touvron, H. et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).

4. Wei, J. , et al. Emergent abilities of large language models. arXiv 2206.07682 (2022).

5. Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences 118 (2021).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3