Bacterial catabolic system of acetovanillone and acetosyringone useful for upgrading aromatic compounds obtained through chemical lignin depolymerization

Author:

Higuchi Yudai,Kamimura Naofumi,Takenami Hiroki,Kikuiri Yusei,Yasuta Chieko,Tanatani Kenta,Shobuda Toru,Otsuka Yuichiro,Nakamura Masaya,Sonoki Tomonori,Masai EijiORCID

Abstract

ABSTRACTAcetovanillone is a major aromatic monomer produced in oxidative/base-catalyzed lignin depolymerization. However, the production of chemical products from acetovanillone has not been explored due to the lack of information on the microbial acetovanillone catabolic system. Here acvABCDEF was identified as specifically induced genes during the growth of Sphingobium sp. strain SYK-6 cells with acetovanillone and these genes were essential for SYK-6 growth on acetovanillone and acetosyringone (a syringyl-type acetophenone derivative). AcvAB and AcvF produced in Escherichia coli phosphorylated acetovanillone/acetosyringone and dephosphorylated the phosphorylated acetovanillone/acetosyringone, respectively. AcvCDE produced in Sphingobium japonicum UT26S converted the dephosphorylated phosphorylated acetovanillone/acetosyringone intermediate into vanilloyl acetic acid/3- (4-hydroxy-3,5-dimethoxyphenyl)-3-oxopropanoic acid through carboxylation. To demonstrate the feasibility of producing cis,cis-muconic acid from acetovanillone, a metabolic modification on a mutant of Pseudomonas sp. strain NGC7 that accumulates cis,cis-muconic acid from catechol was performed. The resulting strain expressing vceA and vceB required for converting vanilloyl acetic acid to vanillic acid and aroY encoding protocatechuic acid decarboxylase in addition to acvABCDEF successfully converted 1.2 mM acetovanillone to approximate equimolar cis,cis-muconic acid. Our results are expected to help improve the yield and purity of value-added chemical production from lignin through biological funneling.IMPORTANCEIn the alkaline oxidation of lignin, aromatic aldehydes (vanillin, syringaldehyde, and p-hydroxybenzaldehyde), aromatic acids (vanillic acid, syringic acid, and p- hydroxybenzoic acid), and acetophenone-related compounds (acetovanillone, acetosyringone, and 4’-hydroxyacetophenone) are produced as major aromatic monomers. Also, base-catalyzed depolymerization of guaiacyl lignin resulted in vanillin, vanillic acid, guaiacol, and acetovanillone as primary aromatic monomers. To date, microbial catabolic systems of vanillin, vanillic acid, and guaiacol have been well characterized, and the production of value-added chemicals from them has also been explored. However, due to the lack of information on the microbial acetovanillone and acetosyringone catabolic system, chemical production from acetovanillone and acetosyringone has not been achieved. This is the first study to elucidate the acetovanillone/acetosyringone catabolic system, and to demonstrate the potential of using these genes for value-added chemicals production from these compounds.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3