Abstract
AbstractActomyosin is a canonical example of an active material, driven out of equilibrium in part through the injection of energy by myosin motors. This influx of energy allows actomyosin networks to generate cellular-scale contractility, which underlies cellular processes ranging from division to migration. While the molecular players underlying actomyosin contractility have been well characterized, how cellular-scale deformation in disordered actomyosin networks emerges from filament-scale interactions is not well understood. Here, we address this question in vivo using the meiotic surface contraction wave of Patiria miniata oocytes. Using pharmacological treatments targeting actin polymerization, we find that the cellular deformation rate is a nonmonotonic function of cortical actin density peaked near the wild type density. To understand this, we develop an active fluid model coarse-grained from filament-scale interactions and find quantitative agreement with the measured data. This model further predicts the dependence of the deformation rate on the concentration of passive actin crosslinkers and motor proteins, including the surprising prediction that deformation rate decreases with increasing motor concentration. We test these predictions through protein overexpression and find quantitative agreement. Taken together, this work is an important step for bridging the molecular and cellular length scales for cytoskeletal networks in vivo.
Publisher
Cold Spring Harbor Laboratory
Reference48 articles.
1. The Actin Cytoskeleton as an Active Adaptive Material;Annu Rev Condens Matter Phys,2020
2. From cytoskeletal assemblies to living materials;Curr. Opin. Cell Biol,2019
3. Hydrodynamics of soft active matter
4. Active matter at the interface between materials science and cell biology;Nature reviews materials,2017
5. Symmetry, Thermodynamics, and Topology in Active Matter;Phys. Rev. X,2022
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献