Distinct evolutionary trajectories of SARS-CoV-2 interacting proteins in bats and primates identify important host determinants of COVID-19

Author:

Cariou Marie,Picard Léa,Guéguen Laurent,Jacquet Stéphanie,Cimarelli AndreaORCID,Fregoso Oliver I,Molaro Antoine,Navratil Vincent,Etienne LucieORCID

Abstract

AbstractThe COVID-19 pandemic is caused by SARS-CoV-2, a novel coronavirus that spilled from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional-genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus-host interfaces. Here, we performed high-throughput evolutionary analyses of 334 SARS- CoV-2 interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus-host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus-host arms-race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo important interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified functional adaptations involved in SARS- CoV-2 infection in bats and primates, critically enlightening modern genetic determinants of virus susceptibility and severity.Key findings:Evolutionary history of 334 SARS-CoV-2 interacting proteins (VIPs) in bats and primates identifying how the past has shaped modern viral reservoirs and humans – results publicly-available in an online resource.Identification of 81 primate and 38 bat VIPs with signatures of adaptive evolution. The common ones among species delineate a core adaptive interactome, while the ones displaying distinct evolutionary trajectories enlighten host lineage-specific determinants.Evidence of primate specific adaptation of the entry factor TMPRSS2 pointing to its host- specific in vivo importance and predicting molecular interfaces.FYCO1 sites associated with severe COVID-19 in human (GWAS) display hallmarks of ancient adaptive evolution in primates, highlighting its importance in SARS-CoV-2 replication or pathogenesis and differences with the bat reservoir.Identification of adaptive evolution in the bat’s multifunctional RIPK1 at residues that may differentially regulate inflammation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3