Abstract
AbstractNotch signaling promotes T-cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like ligand DLL4. To assess if Notch’s effects are evolutionarily conserved and identify key mechanisms, we studied antibody-mediated DLL4 blockade in a non-human primate model similar to human allo-HCT. Short-term DLL4 blockade improved post-transplant survival with striking, durable protection from gastrointestinal GVHD, out of proportion to other disease sites. Unlike prior immunosuppressive strategies, anti-DLL4 interfered with a T-cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin a4b7 in conventional T-cells via b1 competition for a4 binding, while preserving a4b7 in regulatory T-cells. Thereby, DLL4/Notch blockade decreased effector T-cell infiltration into the gut, with increased regulatory to conventional T-cell ratios early after allo-HCT. Our results identify a conserved, biologically unique and targetable role of DLL4/Notch signaling in GVHD.One Sentence SummaryNotch signaling promotes pathogenic effector T cell infiltration of the intestine during acute graft-versus-host disease.
Publisher
Cold Spring Harbor Laboratory