Fast and flexible design of novel proteins using graph neural networks

Author:

Strokach AlexeyORCID,Becerra David,Corbi-Verge CarlesORCID,Perez-Riba Albert,Kim Philip M.ORCID

Abstract

AbstractProtein structure and function is determined by the arrangement of the linear sequence of amino acids in 3D space. Despite substantial advances, precisely designing sequences that fold into a predetermined shape (the “protein design” problem) remains difficult. We show that a deep graph neural network, ProteinSolver, can solve protein design by phrasing it as a constraint satisfaction problem (CSP). To sidestep the considerable issue of optimizing the network architecture, we first develop a network that is accurately able to solve the related and straightforward problem of Sudoku puzzles. Recognizing that each protein design CSP has many solutions, we train this network on millions of real protein sequences corresponding to thousands of protein structures. We show that our method rapidly designs novel protein sequences and perform a variety ofin silicoandin vitrovalidations suggesting that our designed proteins adopt the predetermined structures.One Sentence SummaryA neural network optimized using Sudoku puzzles designs protein sequences that adopt predetermined structures.

Publisher

Cold Spring Harbor Laboratory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3